

BASEL

National Center of Competence in Research "Nanoscale Science"

Thilo Glatzel, thilo.glatzel@unibas.ch

Molecular and carbon-based electronic systems

Single molecule deposition and properties on surfaces

Functional Devices

Motivation opto-electronic charge transfer processes in molecules

- locale surface potential at atomic scale surface photovoltage
- transfer to room temperature
- stabilization and **manipulation** of molecules/atoms
- quantification of the observed signals (forces and energy)
- development of new measurement methods

Overview

- Introduction into SPM techniques
 - interaction forces
 - detection mechanism & setup
- Properties of single C₆₀ molecules
 - orientation of single molecules
 - mechanical properties
- Manipulation of porphyrin molecules
 - structural analysis
 - 3D force spectroscopy
 - controlled molecular manipulation
- Formation of a molecular wire
 - on surface reaction
 - determination of pulling forces
- Electronic Information at submolecular scale
 - Donor and Acceptor molecules
 - Optoelectronic excitation of CuPc

MCES - FS17

Overview

- Introduction into SPM techniques
 - interaction forces
 - detection mechanism & setup
- Properties of single C₆₀ molecules
 - orientation of single molecules
 - mechanical properties
- Manipulation of porphyrin molecules
 - structural analysis
 - 3D force spectroscopy
 - controlled molecular manipulation
- Formation of a molecular wire
 - on surface reaction
 - determination of pulling forces
- Electronic Information at submolecular scale
 - Donor and Acceptor molecules
 - Optoelectronic excitation of CuPc

MCES - FS17

Atomic Force Microscopy

contact AFM

dynamic AFM

Experimental Setup AFM/STM

Nanosurf, ambient AFM (Flex-AFM)

Multimode AFM

LT-STM/AFM, Omicron

home-build RT-AFM, UHV

MCES - FS17

Quantitative understanding of nc-AFM

Conservative forces \Rightarrow shift of resonance curve Δf Dissipative forces \Rightarrow broadening of curve $\Delta \Gamma$

Frequency modulation:

$$f_0 = \frac{1}{2\pi} \sqrt{\frac{k}{m^*}} \qquad \Delta f = -\frac{f_0}{2k} \frac{\partial F_{tot}}{\partial z}$$

 \Rightarrow measured topography = surface of constant $\frac{\partial F}{\partial z}$

Microfabrizierte "Cantilever"

Länge : $I = 450 \mu m$ Breite : $w = 45 \mu m$ Dicke: $t = 1.5 \mu m$ E=1.69 10^{11} N/m²

Spitzenhöhe: 12 µm Spitzenradius: 10 nm

Federkonstante k:

$$k = \frac{Ewt^3}{4l^3} = 0.15 \text{ N/m}$$

nc-AFM scheme

Short range interaction

Experimental Setup nc-AFM and KPFM

MCES - FS17

Experimental Setup UHV AFM/STM

• Room temperature AFM (UHV)

- UHV: Base pressure below 1x10⁻¹⁰ mbar
- · Operation at room temperature
- Mixed mode: AFM/STM
- · Beam deflection method
- · Bandwidth of the photo detector: 3MHz
- · Nanonis Dual-OC4

Low temperature STM/AFM (UHV)

- Tuning Fork from Omicron (qPlus configuration)
- Low temperature measurement (5K-77K)
- High-resolution imaging of molecules
- Determination of the "force needed to move an adatom on a surface"

MCES - FS17

Overview

- Introduction into SPM techniques
 - interaction forces
 - detection mechanism & setup
- Properties of single C₆₀ molecules
 - orientation of single molecules
 - mechanical properties
- Manipulation of porphyrin molecules
 - structural analysis
 - 3D force spectroscopy
 - controlled molecular manipulation
- Formation of a molecular wire
 - on surface reaction
 - determination of pulling forces
- Electronic Information at submolecular scale
 - Donor and Acceptor molecules
 - Optoelectronic excitation of CuPc

MCES - FS17

[1] G. Schull et al., Phys. Rev. Lett., 99, 226105 (2007) [2] S.A. Burke et al., Phys. Rev. Lett., 94, 096102 (2005) [3] S.A. Burke et al., Phys. Rev. B, 76, 035419 (2007)

Possible C_{60} orientations

High Resolution Imaging C₆₀ on Cu(111)

Scanning Tunneling Microscopy (STM)

Atomic Force Microscopy (STM)

High Resolution Imaging of C₆₀ Molecules

tuning fork AFM measurements

→ Constant-current AFM measurement (STM feedback I = 50 pA, V = 6 mV, A = 80 pm)

High Resolution Imaging of C₆₀ Molecules

local mechanical properties

61 x 61 points, $\Delta f(z)$ with 256 points, atom tracking

MCES - FS17

R. Pawlak et al., ACS Nano 5, 6349-6354, (2011)

Above the center of the carbon ring ~4 N/m.

Overview

- Introduction into SPM techniques
 - interaction forces
 - detection mechanism & setup
- Properties of single C₆₀ molecules
 - orientation of single molecules
 - mechanical properties
- Manipulation of porphyrin molecules
 - structural analysis
 - 3D force spectroscopy
 - controlled molecular manipulation
- Formation of a molecular wire
 - on surface reaction
 - determination of pulling forces
- Electronic Information at submolecular scale
 - Donor and Acceptor molecules
 - Optoelectronic excitation of CuPc

Porphyrins on Cu(111) AFM/STM investigation at LT

(F. Diederich, ETH Zurich).

CN endgroups:

- metal-ligand interaction
- strong dipolar moment
- Anchoring sites for molecules on insulating surfaces

STM overview after deposition on the sample kept at 80K, (I = 30 pA, V = 60 mV)

- Symmetry breaking after adsorption on Cu(111)
- Saddle conformation

Vertical Manipulation catch the molecule with the tip...

Method: z-spectroscopic curve in the center of the molecule

Friction measurement with a molecule linked to the tip

Atomic resolution on Cu(111)

Vertical Manipulation friction with a single molecule

3D-spectroscopic measurement

 \cdot T = 4 K, f_o = 26438 Hz, Q = 30808, A = 60 pm, V_{tip} = 300 μ V,

• acquisition time = 10-15 hours, grid size : 60x60x128 pt (2x2x0.5nm),

· grid mode with atom tracked positionning

Vertical switching of the dicyanophenyl leg

R. Pawlak et al., ACS Nano 6, 6318-6324, (2012).

Vertical switching of the dicyanophenyl leg

R. Pawlak et al., ACS Nano 6, 6318-6324, (2012).

Lateral Manipulation

1.000

1.000

1 m

Controlled rotation

Rotation of 60°

Absolute interaction force = - 500 pN

dissipated energy = **30-80 meV/cycle**

Influence of the targeted CN function

Tracking point

- ▶ 95 % of induced rotations
- 15 % of unusual conformations after motion
- Control of the rotation direction (clockwise or anticlockwise) depending on the targeted N atoms.

Mechanism

Overview

- Introduction into SPM techniques
 - interaction forces
 - detection mechanism & setup
- Properties of single C₆₀ molecules
 - orientation of single molecules
 - mechanical properties
- Manipulation of porphyrin molecules
 - structural analysis
 - 3D force spectroscopy
 - controlled molecular manipulation
- Formation of a molecular wire
 - on surface reaction
 - determination of pulling forces
- Electronic Information at submolecular scale
 - Donor and Acceptor molecules
 - Optoelectronic excitation of CuPc

Surface chemical reactions for a longmolecular wire

Ullmann coupling reaction

L. Grill et al., Nat. Nanotechnol. 2, 687 (2007).

Conductance measurement

- - L. Lafferentz et al.,, Science 323, 1193 (2009).

STM topography of conjugated molecule wire on Au(111)

The "tail" is moving by thermal energy.

Low binding energy to the substrate (physisorption)

Tip-sample interaction

Mechanical response of the wire

Model calculation Frenkel-Kontorova model

Equivalent spring k and equilibrium length b Unit-substrate interaction, sinusoidal potential with amplitudeU1(x) and periodicity b

Model calculation

