

BASEL

National Center of Competence in Research "Nanoscale Science"

Thilo Glatzel, thilo.glatzel@unibas.ch

Molecular and carbon-based electronic systems

Single molecule deposition and properties on surfaces

Functional Devices

Overview

- Introduction into SPM techniques
 - interaction forces
 - detection mechanism & setup
- Properties of single C₆₀ molecules
 - orientation of single molecules
 - mechanical properties
- Manipulation of porphyrin molecules
 - structural analysis
 - 3D force spectroscopy
 - controlled molecular manipulation
- Formation of a molecular wire
 - on surface reaction
 - determination of pulling forces
- Electronic Information at submolecular scale
 - Donor and Acceptor molecules
 - Optoelectronic excitation of CuPc

MCES - FS17

Th. Glatzel, Uni Basel (2017)

Donor and acceptor molecules

4-(4-(2,3,4,5,6-pentafluorophenylethynyl)-2,3,4,5tetrafluorophehylethnyl)phenylethynylbenzene (FFPB)

Fluorine: Strong electron affinity > acceptor Non-Substituted carbon ring > donor

AADD molecule

Dipole: 4.27 Debye (i.e. 2.3 times larger than water)

MCES - FS17

Au(110) 2×1

D. Matsuo et al., Chem. Lett. 39, 1300 (2010).

STM image – self assemble structure

Deposited on cold substrate (~120 K) Measurement at 4.8 K

¹⁰ pA, -2.0 V

Attempt to get a real conformation via DFT

DFT result show no difference

Au tip Towards seeing the chemical structure

Constant height mode

Current map

l (pA)

Frequency shift map

∆f (Hz)

Molecule tip Seeing real structure in self-assembly

NC-AFM image

DFT calculation

-Excellent agreement-

Quasi-static bias spectroscopy Charge distribution

Procedure

- Track to the marker site
- Turn off Z feedback
- Move to the measurement point
- Set tip closer to the sample by 50 pm
- Bias dependent measurement
- Move back to the marker site
- Turn on the Z feedback (-500 mV, 50 pA)

Local contact potential difference

Bias sweep : ±500 mV Points : 256

$$\Delta LPCD = 10.4 \text{ mV}$$

2D map extracted via $\Delta f(x,y,V)$

STM topography

28× 59 grid points (1652 points), 16hours33mintues, restricted by the refilling cycle of liquid He C-H and C-F induce a net dipole moment of 4.27D ($H_2O \sim 2D$) along the molecular axis

CuPc molecules on Cu surfaces related publications

Th. Glatzel, Uni Basel (2017)

H. Karacuban et al., Surf. Sci. 603, L39, (2009). J. Schaffert et al., Nature Mat. 12, 223, (2013). J. Schaffert et al., PRB 88, 075410, (2013).

CuPc deposition on Cu(111)

Cu-phthalocyanine (CuPc)

U=-200mV, I=30pA

CuPc deposition on Cu(111)

on Ag(111) on Cu(111)

structurally similar, higher interaction on Cu(111)

1 nm

- physisorption (vdW interactions)
- chemisorption (chem. bonds)
- adsorption geometry defined by mechanical & electronic properties

MCES - FS17

low

1 nm

CuPc on Cu(111) Local Adsorption Geometry

U=-200mV, I_t=30pA

DFT with VdW correction and in PBE form

- strong interaction
- 6.58 eV/molecule
- symmetry reduction

CuPc on Cu(111) Local Adsorption Geometry

U=-200mV, I_t=30pA

Th. Glatzel, Uni Basel (2017)

CuPc switching

U=30 mV

U=-30 mV

3D bias spectroscopy current maps

- contrast transition in simultaneously recorded I, (x,y,U)
- different for forward and backward directions

3D bias spectroscopy current curves

MCES - FS17

Th. Glatzel, Uni Basel (2017)

Switching Adsorption Configuration

- telegraph noise corresponds to frustrated rotations
- bistable regime: controllable switching of adsorption configuration
- can be induced upon scanning with different bias voltages

Substrate Molecule Interactions CuPc on NaCl(2ML) / Cu(111)

U=-1.7V, I_t=4pA

DFT with VdW correction and in PBE form

- weak interaction
- 2 eV/molecule
- symmetry preservation

Substrate Molecule Interactions CuPc on NaCl(2ML) / Cu(111)

No charging observed

CuPC on Cu(111) and NaCl Local Contact Potential Difference

LCPD of CuPc **Comparison with DFT calculations**

CuPc on NaCl(2ML) / Cu(111) x meas -0.01 x meas — rit 194 ____ fit -0.196 experiment x meas 196 — fit -198 20 ∑-0.198 50 −0.2 ULOPO [V] -0.03 -20040 202 -60 204 -0.0580 -0.8 -0.4 0 0.4 0.8 -0.6 -0.3 0 0.3 0.6 0.9 Lateral distance from Cu Inmi Lateral distance from Cu [nm] -0.202 -0.07 -0.204 -0.6-0.4-0.2 0 0.2 0.4 0.6 d [nm] -0.9 -0.6 -0.3 0 d [nm] 0.3 0.6 0.9 -0.25F hollow ^o bridge¤ 0.3 0.2 ∑-0.3 ⊐ ∑0.1 ⊐ 0 DFI 0 -0.1 -0.35 -0.2 -0.6 -0.4 -0.2 0 d [nm] 2 0 0.2 0.4 0.6 d [nm] 0.2 0.4 0.6 -0.6 -0.4 -0.2

CuPc on Cu(111)

A. Sadeghi et al., Phys. Rev. B., 86, 075407 (2012) A. Sadeghi, phd-thesis, University of Basel (2013)

MCES - FS17

1D bias spectroscopy CuPC-tip on C₆₀ on Cu(111): under illumination

MCES - FS17

Th. Glatzel, Uni Basel (2017)

Overview 2

Kelvin Probe Force Microscopy

- Measurement principle
- Experimental setup

• Cyano-Porphyrin Wires

- Growth along step edges of KBr
- Multiwire assemblies on NaCl and KBr
- Contacting and cutting molecular wires

Truxenes

- Self assemblies on KBr crystals
- Molecular structures on patterned surfaces
- Reconstructing surfaces
- Single molecule at room temperature

Overview 2

Kelvin Probe Force Microscopy

- Measurement principle
- Experimental setup
- Cyano-Porphyrin Wires
 - Growth along step edges of KBr
 - Multiwire assemblies on NaCl and KBr
 - Contacting and cutting molecular wires
- Truxenes
 - Self assemblies on KBr crystals
 - Molecular structures on patterned surfaces
 - Reconstructing surfaces
 - Single molecule at room temperature

noncontact Atomic Force Microscopy nc-AFM / KPFM principle

E

Th. Glatzel, Uni Basel (2017)

Kelvin Probe Force Microscopy

Principle - biomodal detection (AM-KPFM)


```
Th. Glatzel, Uni Basel (2017)
```

Experimental Setup nc-AFM and KPFM

MCES - FS17

Th. Glatzel, Uni Basel (2017)

Experimental Results: nc-AFM

inhomogeneous sample: HOPG + $\frac{1}{2}$ monolayer C₆₀

 \rightarrow contrast inversion: HOPG \leftrightarrow C₆₀

MCES - FS17

S. Sadewasser et al., PRL, 2003, 91, 266101

Experimental Results: KPFM

inhomogeneous sample: HOPG + ¹/₂ monolayer C₆₀

MCES - FS17

S. Sadewasser et al., PRL, 2003, 91, 266101

Capacitive Cross Talk bias-spectroscopy on KBr

V_{AC}=1V, f₂=960.831kHz

Atomic Scale Contrast in AM-KPFM

Truxenes on KBr

Si(111)

MCES - FS17

Cyano-porphyrins on 1MI KBr

Au & porphyrins on Cu(111)/KBr

A. Sadeghi et al., Phys. Rev. B 86, 075407, (2012).
G. Elias et al., Beilstein J. of Nanotech. 2, 252-260, (2011).
S. Kawai et al., Nanotechnology 21, 245704, (2010).
L. Nony et al., Nanotechnology 20, 264014, (2009).
Th. Glatzel et al., Nanotechnology 20, 264016, (2009).
G. Enevoldsen et al., Phys. Rev. Lett. 100, 236104, (2008).
F Bocquet et al., Phys. Rev. B 78, 035410, (2008).

Overview 2

- Kelvin Probe Force Microscopy
 - Measurement principle
 - Experimental setup
- Cyano-Porphyrin Wires
 - Growth along step edges of KBr
 - Multiwire assemblies on NaCl and KBr
 - Contacting and cutting molecular wires
- Truxenes
 - Self assemblies on KBr crystals
 - Molecular structures on patterned surfaces
 - Reconstructing surfaces
 - Single molecule at room temperature

Molecules on Insulators:

- No STM possible nc-AFM mandatory
- Low diffusion barrier but high intermolecular interaction
- Low temperatures easier to "fix" molecules but not easy to find applications

Asymmetric Cyano-Porphyrins Structure and Wire Formation

- able to $\pi \pi$ stack
- negative charge at the nitrogen atom induces a dipole (p ~ 4.37 D)
- two 3,5-di(tert-butyl)phenyl- groups act as spacers
- formation of mono-molecular wires
- structure growth across terraces

Wire Formation at step edges of KBr(001)

F. Cheng et al. Chem. Eur. J. 12, 6062-6070, (2006). Th. Glatzel et al., Beilstein J. Nanotechnol. 2, 34-39, (2011).

Wire Formation Structural model

- tilt angle is determined by the side groups, the π - π stacking and the step height
- Steps higher than 3 ML prevent a π - π stacking

Th. Glatzel et al., Beilstein J. Nanotechnol. 2, 34-39, (2011).

Molecular Assemblies Multiwires on KBr

- Multiwire growth across terraces
- The <110> directions are preferred
- Different heights are visible

Molecular Assemblies High resolution imaging

Incommensurate growth in <110>

Distance between K⁺ ions:

<110>: 4.65 Å <100>: 6.60 Å

Molecular Assemblies Structural model

- Inter-molecular equilibrium separation ~ 5.7 Å
- Directed growth by the substrate
- Distance between Na⁺ ions: <110>: 3.99 Å
 <100>: 5.65 Å
- Distance between K^+ ions: <110>: 4.67 Å

MCES - FS17

Th. Glatzel et al., Beilstein J. Nanotechnol. 2, 34-39, (2011).

<100>: 6.60 Å

Contacting Molecular Assemblies Au-Molecules-Au

- Molecules arrange at steps and across terraces
- The growth is started/stopped at gold clusters.

Interface of Molecules and Au Topography and Surface Potential

- 250 mV between the KBr surface and the Au nanoclusters
- 220 mV between Au nanocluster and the molecular wire

MCES - FS17

Th. Glatzel et al., APL 94, 063303 (2009)

Self-Healing of Molecular Wires

Topography

Parameter: 90x90nm², A = 5nm, γ = -0.5fN \sqrt{m} , V_{bias} = 0.43V

MCES - FS17

S. Kawai, Th. Glatzel et al., APL 95, 103109 (2009)

Contacting Molecular Assemblies Nanostencil (IBM Rüschlikon)

L. Gross, Th. Glatzel et al., J. Vac. Sci. Technol. B, 28, C4D34-C4D39, (2010).

Contacting Molecular Assemblies Nanostencil (IBM Rüschlikon)

300x300nm²

Overview 2

- Kelvin Probe Force Microscopy
 - Measurement principle
 - Experimental setup
- Cyano-Porphyrin Wires
 - Growth along step edges of KBr
 - Multiwire assemblies on NaCl and KBr
 - Contacting and cutting molecular wires

Truxenes

- Self assemblies on KBr crystals
- Molecular structures on patterned surfaces
- Reconstructing surfaces
- Single molecule at room temperature

Truxenes on Patterned Surface

filled and unfilled pits measured at RT

- cooperation with A. Echavarren, Tarragona
- molecules has three CN groups
- better sticking to ionic surfaces expected

and the result of post annealing at 155 C for 15 mins

Truxenes on patterned surface Filled and unfilled pits

MCES - FS17

Th. Glatzel, Uni Basel (2017)

Reconstruction of Ionic Surfaces Truxene molecules

T. Trevethan, Th. Glatzel et al., Small 7, 1264, (2011)

Imaging a Single Molecule Measurements at RT and Quantum Chemical Calculations

binding energies: kink: 1.33 eV step: 1.01 eV MCES - FS17 surface: 0.42 eV

B. Such, Th. Glatzel et al. ACS Nano, 4, 3429-3439, (2010).

Calculations of adsorbed Truxenes DFT calculations and MD simulations

Potential Energy Change Transforming the Island/Pit Structure

Potential energy to create a pair of kinks: - 0.44eV Decoration by two or more truxene molecules: + 0.64eV

3D dynamic force spectroscopy at RT DPDI molecular network

Cooperation with L. Gade, Th. Jung and M. Stöhr

M. Stöhr; Angew. Chem. Int. Ed. 44, 7394(2005)

$$A_{2nd} = 400 \text{ pm}$$
 $A_{TR} = 50 \text{ pm}$

8 nm x 8 nm

3D dynamic force spectroscopy at RT DPDI molecular network

Th. Glatzel, Uni Basel (2017)

Conclusion

opto-electronic charge transfer processes in molecules

- locale surface potential at atomic scale surface photovoltage
- transfer to room temperature
- stabilization and **manipulation** of molecules/atoms
- quantification of the observed signals (forces and energy)
- development of new measurement methods