

Molecular and carbon-based electronic systems

Lecture 9 - Insights in density functional theory for molecular junctions

Vorlesung Uni Basel, HS2017

Landauer approach to electron transport

R. Landauer, IBM J. Res. Dev. 1, 223 (1957)

simple one-level model

$$\begin{split} \text{Analytical expression for the current} \quad I(E,V) &= \frac{2e}{h} \int^{\infty} T(E,V) [f(E-\mu_2) - f(E-\mu_1)] dE \\ \text{At low T, Fermi functions \approx Heaviside} \\ \text{step functions, and} \qquad I(V) &= \frac{2e}{h} \int_{\frac{-eV}{2}}^{\frac{eV}{2}} T(E,V) dE \\ \text{Using the expressions} \qquad T(E,V) &= \frac{4\Gamma_1\Gamma_2}{(E-E_0(V))^2 + (\Gamma_1 + \Gamma_2)^2} \\ E_F(V) &= \frac{eV}{2} \cdot \frac{\Gamma_1 - \Gamma_2}{\Gamma_1 + \Gamma_2} \\ \text{we can write} \qquad I(V) &= \frac{8e}{h} \cdot \frac{\Gamma_L\Gamma_R}{\Gamma_L + \Gamma_R} \left[\arctan\left(\frac{2E_0 + eV\left(\frac{\Gamma_L - \Gamma_R}{\Gamma_L + \Gamma_R} + 1\right)}{2(\Gamma_L + \Gamma_R)}\right) \\ &- \arctan\left(\frac{2E_0 + eV\left(\frac{\Gamma_L - \Gamma_R}{\Gamma_L + \Gamma_R} - 1\right)}{2(\Gamma_L + \Gamma_R)}\right) \right] \end{split}$$

3 fit parameters $\Gamma_{1,}\Gamma_{2}$, $E_{0} = E_{0}$ (V)

molecular energy levels

(isolated) molecule

quantum system with spectrum of discrete energy states (molecular orbitals)

⇒ 'Particle in a box': molecule is small box box smaller ⇔ levels more spaced ($\delta E > k_B T$)

Overview

- Quantum chemistry (QC)
- Density functional theory (DFT)
- Non-equilibrium Green's function (NEGF)

Overview

- Quantum chemistry (QC)
- Density functional theory (DFT)
- Non-equilibrium Green's function (NEGF)

Schrödinger's Equation

• Molecule can be described using the Schrödinger Equation

Time-independent Schrödinger equation (general) $\hat{\mathbf{H}} \, \Psi = E \Psi$

Schrödinger's Equation

• Molecule can be described using the Schrödinger Equation

Time-independent Schrödinger equation (general) $\hat{\mathbf{H}} \, \Psi = E \Psi$

$$\hat{H} = -\frac{\hbar^2}{2m_e} \sum_{i} \nabla_i^2 + \frac{1}{2} \sum_{i \neq j} \frac{e^2}{|\mathbf{r}_i - \mathbf{r}_j|} - \sum_{i,J} \frac{Z_J e^2}{|\mathbf{r}_i - \mathbf{R}_J|} - \sum_{I} \frac{\hbar^2}{2M_I} \nabla_I^2 + \frac{1}{2} \sum_{I \neq J} \frac{Z_I Z_J e^2}{|\mathbf{R}_I - \mathbf{R}_J|}$$

Very Complex many body Problem !! (Because everything interacts)

Born-Oppenheimer approximation

- Electrons are much lighter, and faster
- Decoupling in the wave function

$$\Psi(\vec{\boldsymbol{r}}, \vec{\boldsymbol{R}}) \approx \Psi_e(\vec{\boldsymbol{r}}) \Psi_n(\vec{\boldsymbol{R}})$$

• Nuclei described as constant external potential

Born-Oppenheimer approximation

- Electrons are much lighter, and faster
- Decoupling in the wave function

$$\Psi(\vec{\boldsymbol{r}}, \vec{\boldsymbol{R}}) \approx \Psi_e(\vec{\boldsymbol{r}}) \Psi_n(\vec{\boldsymbol{R}})$$

- Nuclei described as constant external potential
- Still numerically intractable

$$\hat{H} = -\frac{\hbar^2}{2m_e} \sum_{i} \nabla_i^2 + \frac{1}{2} \sum_{i \neq j} \frac{e^2}{|\mathbf{r}_i - \mathbf{r}_j|} - \sum_{i,J} \frac{Z_J e^2}{|\mathbf{r}_i - \mathbf{R}_J|}$$

Quantum chemistry calculations

Electronic structure

- Numerical renormalization group
- Configuration interaction
- Hartree Fock
- Density functional theory
- Hückel method

Transport

- NEGF
- GW

Overview

• Quantum chemistry (QC)

• Density functional theory (DFT)

• Non-equilibrium Green's function (NEGF)

 Density functional theory (DFT) is an exact reformulation of many-body quantum mechanics in terms of the electron density rather than the wave function

 \rightarrow equivalent independent single-particle problem

- Density functional theory (DFT) is an exact reformulation of many-body quantum mechanics in terms of the electron density rather than the wave function
 →equivalent independent single-particle problem
- The wave-function is a unique functional of the density (1^e Hohenberg-Kohn theorem, 1964)
- All system properties are governed *only* by the ground-state density.
- Nobelprize in 1998!

The density n(r) which minimizes E[n(r)] is the ground-state density, and minimization of this functional alone is enough to fully determine the exact ground-state energy and density n₀(r).
 (2^e Hohenberg-Kohn theorem, 1964)

The density n(r) which minimizes E[n(r)] is the ground-state density, and minimization of this functional alone is enough to fully determine the exact ground-state energy and density n₀(r).
 (2^e Hohenberg-Kohn theorem, 1964)

$$E_{\rm KS} = T_s[n] + \int d^3 r \ V_{\rm ext}(r) n(r) + E_H[n] + E_{\rm II} + E_{\rm xc}[n]$$

The density n(r) which minimizes E[n(r)] is the ground-state density, and minimization of this functional alone is enough to fully determine the exact ground-state energy and density n₀(r).
 (2^e Hohenberg-Kohn theorem, 1964)

$$E_{\rm KS} = T_{s}[n] + \int d^{3}r \, V_{\rm ext}(\mathbf{r})n(\mathbf{r}) + E_{H}[n] + E_{\rm II} + E_{\rm xc}[n]$$
Kinetic energy
Electron-nuclei interaction
Electron-electron interaction
$$E_{\rm H}[n] = \frac{1}{2} \int d^{3}r \int d^{3}r' \, \frac{n(\mathbf{r})n(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|}$$

Kohn-Sham equations

• But T_s and E_{xc} are unknown. How to find T_s ?

Kohn-Sham equations

- But T_s and E_{xc} are unknown. How to find T_s ?
- Kohn and Sham proposed to model electrons as noninteracting particles that generate the same density as the interacting particles (mean field, 1965)

$$\left(-\frac{\hbar^2}{2m}\nabla^2 + v_{\text{eff}}(\mathbf{r})\right)\phi_i(\mathbf{r}) = \varepsilon_i\phi_i(\mathbf{r})$$

Exchange-correlation (XC)

• All we know about the functional E_{xc} is that it exists, however, its form is unknown.

Exchange-correlation (XC)

• All we know about the functional E_{xc} is that it exists, however, its form is unknown.

Local density approximation (LDA) : uniform electron gas: $E_{XC}[\rho]$ **Generalized gradient approximation (GGA)** : $E_{XC}(\rho, \nabla \rho)$ **Hybrid** (B3LYP) : including some HF for exchange **Dispersion/long-range corrected functionals**

Exchange-correlation (XC)

• All we know about the functional E_{xc} is that it exists, however, its form is unknown.

Local density approximation (LDA) : uniform electron gas: $E_{XC}[\rho]$ **Generalized gradient approximation (GGA)** : $E_{XC}(\rho, \nabla \rho)$ **Hybrid** (B3LYP) : including some HF for exchange **Dispersion/long-range corrected functionals**

→As the XC functional is not exact, electron exchange and correlations are not taken properly into account.

Basis set used to describe orbitals

• A **basis set** is a set of basis functions which are combined in linear combinations to create molecular orbital wavefunctions.

Basis set used to describe orbitals

- A **basis set** is a set of basis functions which are combined in linear combinations to create molecular orbital wavefunctions.
- Basis set can be any type of set of functions: atomic orbitals, plane waves, ...

Guess wavefunction

DFT Results

- DFT provides the energy of the molecular orbitals
- DFT provides the wave-functions of the molecular orbitals

Molecular orbitals

- # electrons per cubic ångström
- Positive and negative part of the wave function

DFT Results

- DFT provides the energy of the molecular orbitals
- DFT provides the wave-functions of the molecular orbitals
- Molecular Orbitals are linear combinations of basis-set functions

DFT Results

- Orbitals are populated from the bottom (Aufbau principle)
- Each orbital can be occupied by at most two electrons (Pauli principle)
- HOMO/LUMO

Summary DFT

- Density functional theory is an exact reformulation of many-body quantum mechanics in terms of the density rather than the wave function
- DFT provides electron density and hence the wave function
- XC functional unknown : electron exchange and correlation effects are approximated
- The result is as good as the functional/basis-set you are using

Geometry optimization

- Look for lowest energy configuration
- Based on energy gradient

Geometry constraints

- Fix specific atoms or blocks of atoms
- Fix specific bond length, angles etc...

Geometry constraints

- Fix specific atoms or blocks of atoms
- Fix specific bond length, angles etc...

Electric fields

• An electric field can be added

Electric fields

- An electric field can be added
- Bias dependence transmission
- Useful to calculate IVs

Spin resolved calculations

SCF tricks/speed-up

- Molecular symmetry
- Fragments
- Frozen core
- Electron smearing

SCF tricks/speed-up - Symmetry

- Enforce symmetry in geometry optimization (reflection, rotation,...)
- Easier to converge
- Speeds up the calculations

SCF tricks/speed-up – Fragments

- Fragments are first converged separately
- Provides better guess for initial density

SCF tricks/speed-up – Fragments

- Fragments are first converged separately
- Provides better guess for initial density
- Allows for convergence which otherwise would be difficult/impossible
- Speeds up convergence

SCF tricks/speed-up – Frozen core

- Deep-core atomic orbitals change very little upon bond formation
- DFT can 'freeze' the core electrons of atoms

SCF tricks/speed-up – Frozen core

- Deep-core atomic orbitals change very little upon bond formation
- DFT can 'freeze' the core electrons of atoms
- Reduces the size of the variational basis set and speeds up calculations
- Core electrons taken into account when calculating energy

SCF tricks/speed-up – Smearing

• Electrons are 'smeared out', allowing for partial occupation of orbitals

SCF tricks/speed-up – Smearing

- Electrons are 'smeared out', allowing for partial occupation of orbitals
- Allows for convergence which otherwise would be difficult/impossible
- Speeds-up convergence
- Especially useful for clusters of metals with many closely located orbitals

Overview

• Quantum chemistry (QC)

• Density functional theory (DFT)

• Non-equilibrium Green's function (NEGF)

NEGF

For charge transport, time dependent Schrödinger equation needs to be solved

$$i\hbarrac{\partial}{\partial t}\Psi({f r},t)=\hat{H}\Psi({f r},t)$$

NEGF

For charge transport, time dependent Schrödinger equation needs to be solved

$$i\hbarrac{\partial}{\partial t}\Psi({f r},t)=\hat{H}\Psi({f r},t)$$

After a lot of math, the transmission is given by

$$T(\epsilon) = \operatorname{Tr} \{ \Gamma_L(\epsilon) G^r(\epsilon) \Gamma_R(\epsilon) G^a(\epsilon) \}$$

G^r is the retarded Green's function

$$\boldsymbol{G}^{r}(\boldsymbol{\epsilon}) = \left[\boldsymbol{\epsilon}\boldsymbol{S} - \boldsymbol{H} - \boldsymbol{\Sigma}_{L}^{r}(\boldsymbol{\epsilon}) - \boldsymbol{\Sigma}_{R}^{r}(\boldsymbol{\epsilon})\right]^{-1}$$

NEGF

$$\boldsymbol{G}^{r}(\boldsymbol{\epsilon}) = \left[\boldsymbol{\epsilon}\boldsymbol{S} - \boldsymbol{H} - \boldsymbol{\Sigma}_{L}^{r}(\boldsymbol{\epsilon}) - \boldsymbol{\Sigma}_{R}^{r}(\boldsymbol{\epsilon})\right]^{-1}$$

 $\epsilon \rightarrow$ Energy incoming electron

 $S \rightarrow Overlap matrix (DFT)$

Overlap of basis-set functions (atomic orbitals).

If orthonormal basis, S is identity matrix

 $H \rightarrow$ Fock matrix (DFT)

Eigenvalues: Orbital energies

Eigenvectors: Orbital shape, linear combination atomic orbitals

 $\Sigma \rightarrow$ Self energy matrix (DFT/arbitrary)

$$\Sigma_{L,R}^{r}(\epsilon) = \Lambda_{L,R}(\epsilon) - \frac{1}{2}\Gamma_{L,R}(\epsilon)$$

Wide-band limit

Wide-band limit (WBL) assumes self-energy is energy independent

$$\Sigma_{L,R}^r = \Lambda_{L,R} - \frac{1}{2}\Gamma_{L,R}$$

and neglects the real part

$$\Sigma_{L,R}^r = -\frac{1}{2}\Gamma_{L,R}$$

•

Wide-band limit

Wide-band limit (WBL) assumes self-energy is energy independent

$$\Sigma_{L,R}^r = \Lambda_{L,R} - \frac{1}{2} \Gamma_{L,R}$$

and neglects the real part

$$\Sigma_{L,R}^r = -\frac{1}{2}\Gamma_{L,R}$$

For gold this is a not-so-crazy assumption

1. Take fock matrix from DFT (H)

2. Take overlap matrix from DFT (S)

3. Chose were to inject charge and construct $\Gamma_{\rm R,L}$ accordingly.

4. Compute transmission

 $T(\epsilon) = \operatorname{Tr} \{ \Gamma_L(\epsilon) G^r(\epsilon) \Gamma_R(\epsilon) G^d(\epsilon) \}$

1. Take fock matrix from DFT (H)

2. Take overlap matrix from DFT (S)

3. Chose were to inject charge and construct $\Gamma_{\rm R,L}$ accordingly.

4. Compute transmission

 $T(\epsilon) = \operatorname{Tr} \{ \Gamma_L(\epsilon) G^r(\epsilon) \Gamma_R(\epsilon) G^d(\epsilon) \}$

1. Take fock matrix from DFT (H)

2. Take overlap matrix from DFT (S)

3. Chose were to inject charge and construct $\Gamma_{\rm R,L}$ accordingly.

4. Compute transmission

 $T(\epsilon) = \operatorname{Tr} \{ \Gamma_L(\epsilon) G^r(\epsilon) \Gamma_R(\epsilon) G^d(\epsilon) \}$

1. Take fock matrix from DFT (H)

2. Take overlap matrix from DFT (S)

3. Chose were to inject charge and construct $\Gamma_{\rm R,L}$ accordingly.

4. Compute transmission

 $T(\epsilon) = \operatorname{Tr} \{ \Gamma_L(\epsilon) G^r(\epsilon) \Gamma_R(\epsilon) G^a(\epsilon) \}$

Orbital decomposition - amplitude

Orbital decomposition - amplitude

Orbital decomposition - phase

Phase is angle between real and complex part of the transmission

 $\pi\text{-phase}$ shift at energy of corresponding orbital

Orbital decomposition - phase

Phase is angle between real and complex part of the transmission

Destructive interference occurs when amplitude is the same, but π -phase shift

Transport with gold electrodes

• Couple to atomic orbitals of gold of outermost layer instead of S atoms.

Transport with gold electrodes

Transport with gold electrodes

Orbital projections

Gas phase HOMO

Orbital projections

How does this compare to experiments?

Bandgap underestimated, conductance overestimated

How does this compare to experiments?

Bandgap underestimated, conductance overestimated

- DFT does not properly account for addition/removal of charge
- 2. Formation of image-charges in the electrodes upon addition/removal of charge not taken into account

$DFT + \Sigma$

• Correct HOMO and LUMO by performing a calculation for ±1e

 \rightarrow increases bandgap a lot

DFT + Σ

 Correct HOMO and LUMO by performing a calculation for ±1e

 \rightarrow increases bandgap a lot

 Correct for image-charge formation in electrodes (classical electrostatics)

 \rightarrow reduces bandgap a bit

DFT + Σ

 Correct HOMO and LUMO by performing a calculation for ±1e

ightarrow increases bandgap a lot

- Correct for image-charge formation in electrodes (classical electrostatics)
 → reduces bandgap a bit
- Shift for (un)occupied levels implemented as scissor operator
- Significantly improves agreement with experimental conductance values

