

Molecular and carbon-based electronic systems

Lecture 11: Sensing

sensors, sensing, transduction & more ISFETs & nanopores

Vorlesung Uni Basel, FS2017

Remote Receiver

Remote Receiver

Receiver

Solar Cell

Compass

Compass

Piezo Ultrasonic Transducers

nanoscale, new materials ⇒ low-power, low-cost, robust ... ubiquitous

Internet of Things (IoT)

def.: Open network of intelligent objects that have the capacity to auto-organize, share information, data and resources, reacting and acting in face of situations and changes in the environment

Internet 1.0 sharing of data created by people *Internet "2.0"* sharing of data created by things

NB: data protection issues...

⇒ integration of smart objects ...

smart building: the technical side

monitors/integrates conditions of various systems for optimization and alerting, ...

smart building: the human side

monitors/integrates conditions of various systems for optimization and alerting, ...

smart city

critical infrastructures: energy, water, transportation (avoid congestion, state of bridges), waste management, ...

smart refrigerator

smart building

nanoscale, new materials ⇒ low-power, low-cost, robust … **ubiquitous**

Internet of Things (IoT)

"smart" monitoring for environment, health care, agriculture/farming, logistics

⇒ sensors beyond p, T

detection, quantification and monitoring of more complex analytes gases, ions, organic molecules, biomarkers, ... e.g.: **continuous glucose monitoring** (diabetes) Dexcom, reading on phone/watch

- general aspects on sensing sensitivity, specificity overview of transducers
- field effect transistors (FETs) as charge sensors MOSFET, graphene and GFET

Examples

- Ion sensitive field-effect transistors (ISFETs) for pH, ionic and biochemicals detection
- Nanopores for sequencing

(biochemical-)sensing

(biochemical-)sensing

competences ?

See e.g. Willner et al., Nanoparticles arrarys sensors, ChemPhysChem, 2000 Lieber et al., Nanowires nanosensors, Mat. Today, 2005

(biochemical-)sensing

Characteristics of a sensor

• **Transfer function**, nonlinearity

- **Sensitivity**: typ., derivative of transfer function
- Selectivity: response exclusively to changes in specific target analyte concentration
- **SNR, low background**: low noise, with ability for correction (differential measurements)
- Dynamical range
- **Response dynamics**: rapid response and recovery
- **Hysteresis** : signal (in)dependent of prior history of measurements (nanoscale devices: nanotubes, graphene, etc: interfacial polarisation effects at contacts)
- Long-term Stability: not subject to fouling, poisoning, or oxide formation that interferes with signal; prolonged stability of biological molecule
- Simple calibration (standards)
- Size, cost, power consumption
- **Operating conditions** (pH range, temperature, ionic strength), **biocompatibility**

sensing

functional layer

Functionalization & immobilization techniques

• **adsorption** (non-specific)

weak bonding; susceptible to pH, temperature, ionic strength, and substrate variations; simple but short lifetime

 encapsulation: place biomaterial behind a membrane permeable to some materials only (e.g. porous graphene membrane)

limits contamination, relatively stable towards changes in pH, etc..

 embedding of a the sensing biological component in a matrix such as a gel or a polymer film
stable but may limit diffusion of sample towards biodetector; activity of biomolecule may be limited also due to gel mesh

• covalent attachment

direct or zero-length cross-linking, strong binding, can limit activity depending on bonding

sensing

transduction: electrical

Transduction

• electrical & electrochemical direct measurement of current through a molecule for instance, molecular electronics; current monitoring through device while binding of sample

> *charge detection* – e.g. ions, charge species; pH meter; ionic concentration variation, e.g *ISFETs*

impedance spectroscopy;

voltammetry or amperometry: cycle a potential to an electrochemical cell with an oxidizing substance)

Electrical Detection

Potentiometric Detection

cf e.g. R. Bashir, Nanohub.org

example: ISFETs

Sentron

Mettler-Toledo

Endress+Hauser:CPS441 and CPS441D with integrated Ag/AgCI reference (needs a KCI reservoir)

example: conductometric detection

non-invasive glucose monitoring: impedance spectroscopy

- glucose variations affect electrical properties of erythrocytes membranes, and lead to variations of the electrolyte balance (in blood, cells and interstitial fluid)
- changes in interface polarisability of cells (Maxwell-Magner),
- typ. freq. 20-60MHz

GlucoWatch® Monitor

www.gluco-wise.com

transduction: mechanical

Transduction

- mechanical mass (QCM - piezo, AFM), surface stress (AFM)
- piezoelectric
 vibration frequency shifted
 by mass adorption at
 surface of device; QCM: at
 10MHz, 4ng cm⁻²Hz⁻¹
- calorimetric

heat produced or absorbed during biochemical reactions

AFM-based: cf e.g. Ch. Gerber et al.

Kavli Prize 2016 in Nanoscience

Mechanical Detection

Surface Stress Change Detection

- ∆z = deflection of the free end of the cantilever
- L = cantilever length
- t = cantilever thickness
- E = Young's modulus
- v = poison's ratio
- $\Delta \sigma_1$ change in surface stress on top surface
- $\varDelta\sigma_{\rm 2}\,$ change in surface stress on bottom surface

Mass Change Detection

k = spring constant
m = mass of cantilever
f₀ = unloaded resonant frequency
f₁ = loaded resonant frequency

cantilever: Concentris

transduction: optical

Transduction

 optical (absorption-, fluorescence-, luminescence-, internal reflection spectroscopy; surface plasmon resonance - SPR; light scattering)

Optical Detection

DNA detection on chip surfaces

example: fluorescence, DNA microarray

- Analyte:
- Recognition Molecule:
- Transduction:

Labelled ss-DNA cDNA, mRNA Fluorescence

Affymetrix

DNA microarray

Gene-chip, Affymetrix

Probe molecules have to be labeled

example: surface plasmon resonance (SPR)

plasmons: reminder

• response of metals to optical fields plasma frequency $\omega_p \sim 10^{15}$ Hz (visible) collective oscillation of e^- in metal

$$\omega_p = \sqrt{\frac{n_e e^2}{m^* \varepsilon_0}}$$

SEM image of a typical nanocrystal embedded in the glass (British museum)

- calc. spectra (Maxwell) for thin film and 30nm Au nanoparticle (classical electromagnetism)
- measured spectrum of 30nm Au

Maier, Atwater, J. Appl. Phys review (2005)

plasmons

• response of metals to optical fields plasma frequency $\omega_p \sim 10^{15}$ Hz (visible) collective oscillation of e^- in metal

$$\omega_p = \sqrt{\frac{n_e e^2}{m^* \varepsilon_0}}$$

- ⇒ enhanced absorption and scattering for em waves & enhanced near field at surface
- NB: larger particles: retardation effects, higher order modes, dephasing

Remember: NP arrays, light-controlled conductance switching

light-controlled molecular switch

"ON" state extended conjugation

"OFF" state

interrupted conjugation

van der Molen et al., , Nano Lett. (2009); MC, Chimia (2010), Chem. Soc. Rev. (2015)

light-controlled conductance switching

van der Molen et al., , Nano Lett. (2009); MC, Chimia (2010), Chem. Soc. Rev. (2015)

plasmon resonances in NP arrays

L. Bernard et al., JPC (2007)

plasmon resonances in NP arrays

C16-capped nanoparticles

in solution (blue) and as an array (black), red shift of surface plasmon resonance: 526 nm to 583 nm.

characterizing plasmon resonances

nanoparticle $\epsilon(\omega) = \epsilon_1(\omega) + i\epsilon_2(\omega)$

L. Bernard et al., JPC (2007)

characterizing plasmon resonances

NB

in **solution**: dilute system, Mie ok

- interaction between neighboring as array nanoparticles, red-shift
- ⇒ effective medium permittivity Maxwell-Garnett

L. Bernard et al., JPC (2007)

optical absorption

Resonance condition

array:

$$\varepsilon_1(\omega_{sp})(1-f) + \varepsilon_m(2+f) = 0$$

Mie: f=0
$$\varepsilon_1 + 2\varepsilon_m = 0$$

Wavelength [nm]

700

600

and a second s 400

500

C12

C8

800

plasmon resonances shift during molecular exchange

(1) G. Whitesides et al., APL, 1998.(2) J. Stapleton et al., Langmuir 2003.

sensing using surface plasmon resonance

plasmon in thin films

 TIR above critical angle θc (Snell's law: ni·sin(θi)=nt·sin(θt) sin(θc)=nt/ni, ni>nt)

 when plasmon induced in metallic thin film (proper incidence angle, thus resonance), the reflected intensity shows a drop

surface plasmon resonance (SPR)

surface plasmon resonance (SPR)

reflectivity vs angle for three different surface states

Biacore

surface plasmon resonance (SPR)

drawbacks: upscalability, integration

- general aspects on sensing sensitivity, specificity overview of transducers
- field effect transistors (FETs) as charge sensors MOSFET, graphene and GFET

Examples

- Ion sensitive field-effect transistors (ISFETs) for pH, ionic and biochemicals detection
- Nanopores for sequencing

FETs for charge sensing

GOAL: specific detection of biochemicals

pH, ionic species, mRNA, DNA, proteins, ...

Requirements

- label-free, multi target sensor,
- quantitative
- upscalable, dense integration: Si-based
- portable, small volume, low cost, low-drift
- implantable, biocompatible
- ⇒ point of care and home diagnostics, implants, drug screening
- ⇒ ISFETs: ion-sensitive field-effect transistors ? detection of charged species, concept from the 70's

Transducer of chemical reactions in electrical signals

brief reminder: MOS capacitor and MOSFET

energy band diagram

 V_{th} depends on C_{ox} , the semiconductor (n_i) and doping (N_A)

MOSFET

MOSFET

transfer characteristics (transconductance)

$$I_{sd} = \mu C_{ox}^{\Box} \frac{W}{L} (V_g - V_{fb}) V_{sd}$$

Gas Sensitive MOSFET

K. I. Lundström et al., J. Appl. Phy. 46, p 3876 (1975)

would graphene FETs be useful ?

- (iii) unbiased bilayer graphene,
- (iv) bilayer graphene with an applied perpendicular field.

graphene FET

- (i) large-area graphene,
- (ii) graphene nanoribbons,
- (iii) unbiased bilayer graphene,
- (iv) bilayer graphene with an applied perpendicular field.

why graphene FETs

graphene FET

charge carrier mobility in various materials & graphene

graphene (graphene-related materials) for sensing

Table 1 GRMs as a platform for enabling new techologiesand applications, with radical [not incremental] advances

features	Enabled applications / technologies		
Atomic thinness	Flexible devices; thin and flexible electronic		
	components; modular assembly / distribution		
	of portable thin devices		
Foldable material	Engineering new materials by stacking		
	different atomic planes or by varying the		
	stacking order of homogeneous atomic		
	planes		
All-surface	Engineering novel 2d crystals with tuneable		
material	physical/chemical properties by control of		
	the surface chemistry. Platform for new		
	chemical /biological sensors		
Solution -	Novel composite materials with outstanding		
processable	physical properties (e.g. high thermal		
	conductivity, κ ; high Young modulus and		
	tensile strength); Novel functional materials		
High carrier	Ultra-high frequency electronic devices		
mobility (μ)			
Optical (saturable)	Novel optoelectronic and thermoelectric		
absorption; photo-	devices; photodetectors		
thermoelectric			
effect			
Field-effect	Highly sensitive transducers		
sensitivity			

Graphene Roadmap, Ferrari et al., Nanoscale (2015)

Optical (saturable) absorption; photo- thermoelectric effect	Novel optoelectronic and thermoelectric devices; photodetectors
Field-effect sensitivity	Highly sensitive transducers
High intrinsic capacitance; high specific surface area (SSA)	Outstanding supercapacitors
Photovoltaic effect, broad-range optical transparency; photocatalytic effects	Energy conversion; energy harvesting; self- powered devices
Theoretically predicted "chiral superconductivity"	High Tc superconductors
Dirac fermions; pseudospin	Valleytronics

devices

Graphene Roadmap, Ferrari et al., Nanoscale (2015)

devices

science & tech.

Graphene Roadmap, Ferrari et al., Nanoscale (2015)

vision....

CHECK

AHEAD

- flexible, stretch (spider silk)
- biodegradable
- high energy de
- low-power, em
- analyzing air p traces and pro

NOKIA Morph. The future mobile device will act as a gateway. It will **connect users to local environment**, as well as the global **internet**. It is an attentive device that **shapes according to the context**. It can change its form from rigid to **flexible** and **stretchable**.

http://research.nokia.com/morph - link broken in 2015

Ferrari et al., Nanoscale (2015)

- general aspects on sensing sensitivity, specificity overview of transducers
- field effect transistors (FETs) as charge sensors MOSFET, graphene and GFET

Examples

- Ion sensitive field-effect transistors (ISFETs) for pH, ionic and biochemicals detection
- Nanopores for sequencing

ISFETs as potentiometric biochemical sensors

Theoretical limit: Nernst response

$$\Delta V_{th} = V_{th,2} - V_{th,1} = 2.3 \frac{kT}{e} \log_{10}(\frac{c_2}{c_1}) \approx 59.6 \,\mathrm{mV} \cdot \log_{10}(\frac{c_2}{c_1})$$

- converts a chemical reaction into an electrical signal
- signal : change in current / shift in threshold voltage

see e.g. Bergveld, IEEE Trans. Biomed. Eng (1970); Bergveld, Sensors & Actuators (2003), IEEE Sensor Conference (2003)

nanowire fabrication: SOI process

ALD oxide 10-20nm: Al₂O₃ or HfO₂

NW

nanowire fabrication: SOI process

sensor device layout

- 48 individually addressable nanowires in 4 separated arrays
- *length*: 6um, *width* (top): 100nm-1um, *thickness* (device layer): 80nm
- fluidic channels with different designs (functionalization, measurement)

sensor device layout

fluidics and measurement setup

characterization of SiNW FET

operation regimes

response to pH changes

$$MeOH \rightleftharpoons MeO^{-} + H_{s}^{+}, K_{a} = \frac{\nu_{MeO^{-}}a_{H_{s}^{+}}}{\nu_{MeOH}}$$
(1)

$$K_{a}: eq. \ const. \ for \ deprotonation$$

$$MeOH_{2}^{+} \rightleftharpoons MeOH + H_{s}^{+}, K_{b} = \frac{\nu_{MeOH} u_{H_{s}^{+}}}{\nu_{MeOH_{2}^{+}}}$$
(2)

total number of **surface groups N**_s (density)

$$N_{\rm s} = \nu_{\rm MeOH} + \nu_{\rm MeO^-} + \nu_{\rm MeOH_2^+} \tag{3}$$

surface charge density

$$\sigma_0 = (\nu_{\rm MeOH_2^+} - \nu_{\rm MeO})e \tag{4}$$

from eqs 1-4

$$\sigma_0 = eN_s \left(\frac{a_{H_s}^2 - K_a K_b}{a_{H_s}^2 + a_{H_s} K_b + K_a K_b} \right)$$
(5)

 $a_{H_s^+}$ activity of surface protons ν density of surface groups

see e.g. P. Bergveld , Sensors and Actuators B 88 1–20 (2003) . Knopfmacher et al., Nano Lett. (2010); A. Tarasov et al., Langmuir (2012)

response to pH changes

Site-binding model

Surface charge is screened by double layer ions

$$\sigma_0 = C_{\rm dl} \Psi_0 = e N_{\rm s} \left(\frac{a_{\rm H_s}^2 - K_{\rm a} K_{\rm b}}{a_{\rm H_s}^2 + a_{\rm H_s} K_{\rm b} + K_{\rm a} K_{\rm b}} \right)$$
(6)

Convert surface proton to bulk proton activity via surface potential ψ_0

$$a_{\mathrm{H}_{*}^{+}} = a_{\mathrm{H}_{b}^{+}} \exp\left(-\frac{e\Psi_{0}}{kT}\right) \tag{7}$$

From (6),(7): relation between ψ_0 and pH_b=-log(a_{Hb+})

$$\Delta V_{th} = -2.3 \frac{k_B T}{e} \alpha \Delta p H \qquad \alpha = \frac{1}{1 + C_{dl}/C_s}$$
$$\Delta V_{th} = -59.5 m V \alpha \Delta p H$$

Nernst limit, case $C_s \gg C_{dl} (\alpha=1)$ at T=300K C_s : surface buffer capacitance (nb of sites) C_{dl} : double layer capacitance

 $C_s = \frac{e^2 N_s}{2.3 k_b T}$

see e.g. P. Bergveld , Sensors and Actuators B 88 1–20 (2003) O. Knopfmacher et al., Nano Lett. (2010); A. Tarasov et al., Langmuir (2012)

NW response: pH sensing

O. Knopfmacher et al., Nano Lett. (2010); A. Tarasov et al.; M. Wipf et al., ACS Nano (2013)

importance of charge screening (Debye length)

$$\lambda_D = \sqrt{\frac{\varepsilon_0 \varepsilon_r k_B T}{2N_A e^2 I}} \qquad I = \frac{1}{2} \sum_{i=1}^n c_i z_i^2$$

I – ionic strength (I=c for 1:1 electrolyte)

/

Example: PBS - Phospate buffered saline

- 137mM NaCl
- 2.7mM KCl
- 12mM phosphate
- \rightarrow 1 x PBS ~150mM, pH7.4

PBS dilution	Concentration [mM]	λ _D
1	150	0.7 nm
0.1	15	2.3 nm
0.01	1.5	7.3 nm

importance of charge screening (Debye length)

A. Vacic et al. J. Am. Chem. Soc. 2011, 133, 13886-13889

effect of an increasing background ionic concentration

Also true for other ions, e.g.: MgCl₂, Na₂SO₄

O. Knopfmacher et al., ChemPhysChem (2012)

metal-coated surface: alternative functionalization possibility

Au film: different surface chemistry

- weaker pH response of Au compared to oxide Al₂O₃, HfO₂
- ▷ N_s ~ 2 orders of magnitude smaller compared to Al₂O₃ ~1% of surface atoms oxidized

specific ion detection

multiple ions detection: Au and AlO surfaces

M. Wipf, R. Stoop et al.

multifunctional platform

ions detection

- pH, Na⁺, K⁺, Ca²⁺, F⁻ sensing with good selectivity using appropriate receptor molecules
- *in-situ* functionalization on different surfaces with microchannels
- so far, up to 4 different functionalizations in a differential configuration on one chip

beyond ions: biomolecules kinetics

FimH detection (bacterial lectin)

with B. Ernst, G. Navarra, Dpt. Pharmacology, Uni Basel

lectins: carbohydrate-binding proteins involved in physiological and pathophysiological processes

e.g.: cell-cell recognition, inflammation, infectious diseases (UTI), immune response, cancer see Sharon, J. Biol. Chem. 2007; Oppenheimer et al., Acta Histochem. 2010

UTI therapy: high-affinity FimH antagonists ⇒ affinity screening tests: SPR Ernst et al., J. Med. Chem. 2010, 2012; Chemmedchem 2012

⇒ can SiNW do the job ?

functionalization

- mercaptohexadecanoic acid (MHDA)
- amine coupling for ligand

beyond ions

- reduced ionic strength buffer: 10mM HEPES, pH 8 (Debye length $\lambda_D \ge 3$ nm) ensure that the proteins are within the electrical double to affect the surface potential
- at pH 8: FimH neg. charged \Rightarrow I_{sd} increase upon binding
- SiNW operated in linear region (constant transconductance g_m)

FimH binding kinetics vs concentration

FimH binding kinetics vs concentration

SiNRs

- **non-specific adsorption** (control wire) *lipophilic character of MHDA layer*
- signal only a function of surf. pot. change see Reed et al., Nat. Nano 2012.

SPR (Biacore T200, Navarra, Ernst et al., Basel)

- saturation at lower FimH concentrations
- dissociation less pronounced dashed lines: Langmuir kinetics K_D ~ 5nM is obtained.

M. Wipf, R. Stoop, et al., ACS Sensors 1(6), 781 (2016)

FimH binding kinetics vs concentration

comparison SiNRs & SPR

 different association and dissociation rates (ka, kd)

NB: variations between SPR systems! Cannon et al., Anal. Biochem. 2004; Katsamba et al., Anal. Biochem. 2006

possible origins of differences

 flow rate at sensor surface & different surface areas

 FimH-mediated bacterial adhesion affected by shear forces see e.g. Vogel et al., J. Bacteriol. 2007, J. Biol. Chem. 2008
 re-adsorption of proteins in flow

• different effective protein concentration (fluidics)

signal	
	SPR
	SiNR
protein injection	time

Fluidic channel	BioFET	Biacore
Flow rate	$26\mu\mathrm{L/min}$	$20\mu L/min$
Height	$100\mu{ m m}$	$40\mu{ m m}$
Width	$500\mu{ m m}$	$500\mu{ m m}$
Length	$4\mathrm{mm}$	$2.4\mathrm{mm}$
Volume	$\approx 0.2\mu \mathrm{L}$	$\approx 0.05\mu { m L}$

different sensing mechanisms: optical (λ_{evan} ~ 300nm) or charge (λ_D ~ 3nm)
 ⇒ protein surface rearrangements affect SiNRs stronger than SPR, longer time const.

Rabe et al., Adv. Colloid Interface Sci. 2011, Roach et al., JACS 2005

proteins detection: competing reactions

- (a) pH response: gradual increase*
 lines: site binding model at different hydroxyl group density Ns (pKa = 9, pKb = 7)
- dependence of linear response on Ns varies from 19mV/pH to 29mV/pH at pH 8
- (b) real time response to FimH, same device increased noise at low pH: air bubbles
- (c) site binding model for two different hydroxyl group densities Ns
 ⇒ importance of competing reactions
 R. Stoop et al., Sens. & Act. B (2015)

*several cleaning & functionalizing steps on the same wire: degradation of the surface state M. Wipf, R. Stoop, et al., ACS Sensors (2016)

can we do it with graphene?

Graphene ISFET

reported literature values for pH sensitivity

~12 mV/pH to ~100 mV/pH (vs liquid gate)

Ang et al., JACS (2008) Ristein et al., J. Phys. D: Appl. Phys. (2010) Cheng et al., Nano Lett. (2010) Ohno et al., Nano Lett. (2009) Heller et al., JACS (2010)

Pt

 V_{sd}

-

Epoxy

Au/Ti

Photoresist

Graphene

Graphene ISFET

W. Fu, C. Nef et al., Nano Lett. 2011

Graphene ISFET: passivation

Graphene FET: oxide layer

W. Fu, C. Nef et al., Nano Lett. 2011

Graphene ISFET: "active" molecule functionalization

Graphene ISFET: response to K⁺ ions

W. Fu, C. Nef et al., Nanoscale. 2013

can we do it with ... conducting polymers ?

organic electrochemical transistors (OECTs)

Common assumptions:

- p-type semiconductor (n_p=10²¹-10²³cm⁻³)
- constant mobility (µ_h=0.045-1 cm²/Vs)
- Injected ions distribute homogenously

S. H. Kim et al. Advanced Materials 2012 Bernards et al. Advanced Materials 2007

organic electrochemical transistors (OECTs): PEDOT:PSS

D. Khodagholy et al. Nature Commun. 2014

working principle PEDOT:PSS OECT

OECTs - mechanical stability

⇒ R. Stoop, M. Sessolo et al.: characterization & noise measurements Phys Rev. Applied (2017)

D. Khodagholy et al. Nature Commun. 2013

- general aspects on sensing sensitivity, specificity overview of transducers
- field effect transistors (FETs) as charge sensors MOSFET, graphene and GFET

Examples

- Ion sensitive field-effect transistors (ISFETs) for pH, ionic and biochemicals detection
- Nanopores for sequencing

DNA sequencing using nanopores

basic principle: DNA translocation and current blockade
 cf Coulter counter for single cells

small diameter, high repetition rate identification of bases?

Dekker et al.

DNA sequencing using nanopores

biological nanopores structural cross-section of α-haemolysin

Bashir et al., Nat. nano (2011)

DNA sequencing using nanopores

structural cross-section of α-haemolysin

dsDNA segment with ssDNA triplets

dsDNA temporariliy blocks translocation until dsDNA dissociates due to high local electric field

Bashir et al., Nat. nano (2011)

solid state nanopores

drawback: thickness of channel (SiN membrane) chanel will contain many bases (base to base: <0.5nm)

⇒ no high-resolution DNA sequencing

Dekker et al.,

posible solution: integrate tunnel device

Bashir et al., Nat. Nano, (2011) Kawai et al., Nat. Nano (2010)

solid state nanopores

Kawai et al., Nat. Nano (2010)

solid state nanopores

Kawai et al., Nat. Nano (2010)

graphene nanopores

+ thinner than 1 base + can be used as electrode to detect base

- hydrophobic

proof of concept: 22nm hole, monolayer graphene lambda DN translocation

NB: sequencing using ISFETs

ARTICLE

Rothberg et al., Nature (2011)

doi:10.1038/nature10242

An integrated semiconductor device enabling non-optical genome sequencing

Jonathan M. Rothberg¹, Wolfgang Hinz¹, Todd M. Rearick¹, Jonathan Schultz¹, William Mileski¹, Mel Davey¹, John H. Leamon¹, Kim Johnson¹, Mark J. Milgrew¹, Matthew Edwards¹, Jeremy Hoon¹, Jan F. Simons¹, David Marran¹, Jason W. Myers¹, John F. Davidson¹, Annika Branting¹, John R. Nobile¹, Bernard P. Puc¹, David Light¹, Travis A. Clark¹, Martin Huber¹, Jeffrey T. Branciforte¹, Isaac B. Stoner¹, Simon E. Cawley¹, Michael Lyons¹, Yutao Fu¹, Nils Homer¹, Marina Sedova¹, Xin Miao¹, Brian Reed¹, Jeffrey Sabina¹, Erika Feierstein¹, Michelle Schorn¹, Mohammad Alanjary¹, Eileen Dimalanta¹, Devin Dressman¹, Rachel Kasinskas¹, Tanya Sokolsky¹, Jacqueline A. Fidanza¹, Eugeni Namsaraev¹, Kevin J. McKernan¹, Alan Williams¹, G. Thomas Roth¹ & James Bustillo¹

The seminal importance of DNA sequencing to the life sciences, biotechnology and medicine has driven

the search for more scalable and le which scalable, low-cost semicor circuit able to directly perform obtained by directly sensing the ion natural nucleotides on this massi contains ion-sensitive, field-effe wells, which provide confinement reactions. Use of the most widely u metal-oxide semiconductor (CMOS of the device to higher densities

ThermoFischer

scribe a DNA sequencing technology in les are used to make an integrated ng of genomes. Sequence data are ed DNA polymerase synthesis using allnsing device or ion chip. The ion chip in perfect register with 1.2 million s detection of independent sequencing integrated circuits, the complementary , large-scale production and scaling how the performance of the system by

sequencing three bacterial genomes, its robustness and scalability by producing ion chips with up to 10 times as many sensors and sequencing a human genome.

NB: sequencing using ISFETs

