

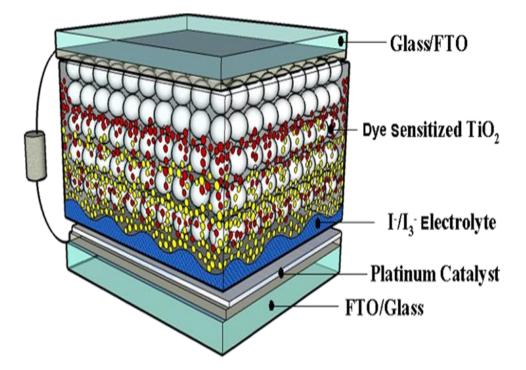
Universität Basel

Dye-sensitized Solar Cell

Ethouba Al Jassin Molecular and Carbon based electronic systems Prof.Michel Calame Dr. Thilo Glatzel Anton Valdyka

Outline

- 1. Introduction
- 2. The Construction of Dssc
- 3. The Mechanisum of Dssc
- 4. Key Efficiency parameters of Dssc
- 5. Advantages/ disadvantages
- 6. Pressent Dssc research and development


Introduction:

- 1960 (discover)
- 1972 (the demonstration and discussion)
- 1988 (Invetation by Brain O Regan and Micheal Grätzel)
- 1991 (the first efficiency)
- 2010 (prize)

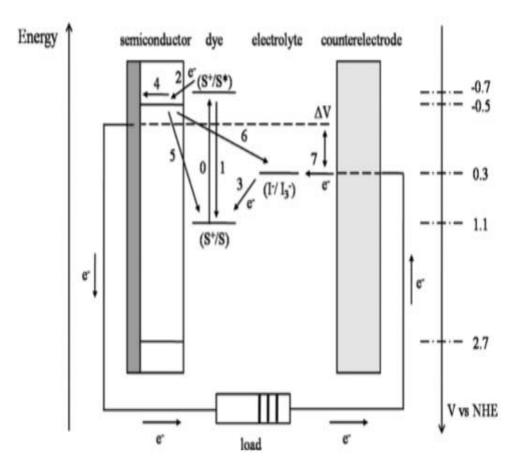
The Construction of DSSc

- Fluoride- doped tin- dioxide (Sno₂:F)
- titanium oxide (TiO2)
- photosesitive (ruthenium-polypyridine dye)
- iodide electrolyte
- platinum metal

The mechanisum of DSSc:

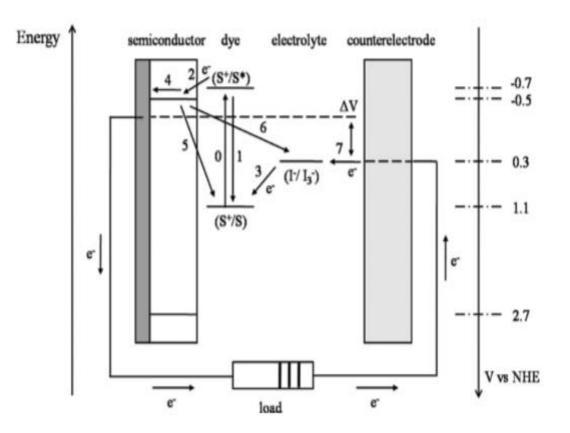
• **Reaction 1 and 2**: electron injection and excited state decay

S +hv \rightarrow S* (photoexcitation)

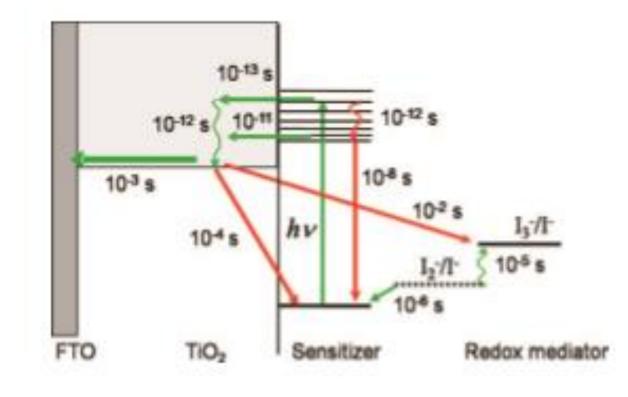

 $S^* \rightarrow S + hv`$ (emission)

 $S^* \rightarrow S^+ + e-cb$ (Ti O_2 Charge injection)

• **Reaction 3**: Regeneration of the oxidized dyes


 $2S^+ + 3I^- \rightarrow 2S + I_3^-$ (regeneration of S)

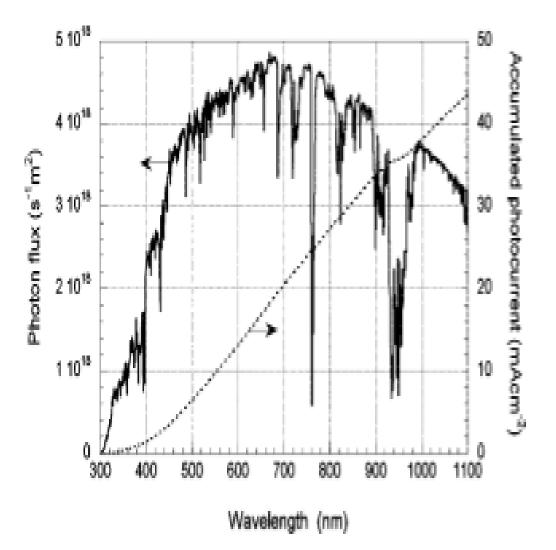
• **Reaction 4:** electron transport through the mesoporous oxide film



- **Recation 5 and 6** : recombination of electrons in the semiconductor with oxidized dyes or electrolyte speicies
- $S^+ + e^- (\operatorname{Ti}O_2) \to S$ (recombination)
- **Reaction 7:** reduction of electron acceptors in the electrolyte at the counter electrode

```
I_3^- + 2e^- \rightarrow 3I^- (regeneration of I^-)
```


The process of electron transfer taking place at the oxide/dye/electrolyte interface



Key efficiency parameters of a DSSc :

- Air mass (AM) = $1/COS\varphi$
- arphi : is the angel of elevation of the sun

The standard solar spectrum (solar cells) :

AM 1.5 G (global) , arphi =42

The irradiance of the sun as a function of wavelenght

Key efficiency parameters of a DSSc :

$\mathbf{\eta}$: electrical energy conversion efficiency

 $\eta = \frac{P_{max}}{P_{in}} = \frac{I_{SC} \cdot V_{OC} \cdot FF}{P_{in}}$

J_{sc}: short circut current

*v*_{oc} : open circut photovoltage

FF: filling factor

 P_{in} : the intencity of the incident light

the filling fctor can assume values between 0 and less than 1

 $\mathbf{FF}=P_{max}/J_{SC}V_{OC}$

IPCE = $\frac{J_{SC}(\lambda)}{e\phi(\lambda)}$

(incident photon to current conversion efficiency)

e: elementary charge

ø: incident ratiative flux (W/ m^2)

Advantages/disadvantags

Advantages :

- Lightweight
- flexibility
- Some selling points

Disadvantag:

- Liquid electrolyte
- Cost
- Electrolyte solution

Pressent DSSc research and development

Researchers at Ecole Polytechnique Federale de Lausanne:

- New melocules (electrolyte)/liquid or gel
- At the cathode platinum \rightarrow cobalt sulfide

last 5-10 years :

- liquid electrlyte \rightarrow solid hole conducting material (hybrid perovskite dye)
- Solid state DSScS with 15% efficiency

References:

• Fundemental Sciences:

Dye- Sensitized solar celles (Edited by K.Kalyanasundaram)

• Materials concepts for solar cells:

Thomas Dittrich

• Dye sensitized solar cells:

Anders Hagfeld, Gerrit Boschloo, Licheng Sun, Lars Kloo,

Henrik Pettersson

Thank you