Silicon Nanowire for Sensing

Fabio Rui
Silicon Nanowire

• 1-D nanomaterial, single crystalline
• Introduced 2001
• Sensing of ions, small molecules, nucleic acids or proteins
• Ultra sensitive
Fabrication

• Top-down (a)
 • Expensive
 • Time consuming
 • 20-100nm

• Bottom-up (b)
 • No mass product
 • Alignment
 • <10nm possible
Electrostatically formed Nanowire
Tuning and Scanning

(a)
0.5 V p⁺ 0.5 V n⁺ SiO₂ p⁺ JG1 JG2

(b)
0 V p⁺ 0 V n⁺ SiO₂ p⁺ JG1 JG2
Controlled Alignment

• Lengmuir-Blodgett
 • Water-air interface
 • 8-10 NW per μm
• Blown-bubble
 • Gas flow 1 NW per 3 μm
Surface functionalization

• 1-2 nm native oxide layer
• Silanol groups
Reusable Surface

- Functional group
- Antibody
- Sensing
- Clean and reuse
How it works

• Receptors on SiNW
• Between S and D
• Sensing solution
• Change of conductance
FET

n-channel Enhancement-mode (Normally-off))

\[I_D \]

\[\begin{align*}
 +V_G & : V_G = 0 \\
 -V_G & : V_G = 0
\end{align*} \]

A
- Metal gate
- Oxide
- Source (S)
- Drain (D)
- p-Si
- G

\[V_G < 0 \]

Accumulation of carriers
Conductance increase

B
- Surface chemistry
- Molecular binding
- Accumulation of carriers
- Conductance increase

Molecular gate
Summary

• Small
• Low cost
• Label-free
• Real-time
• Sensitive
• Diagnostics of diseases
• Screening
• Environmental monitoring
References

• Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation; Kuan-I Chen et al 2010

• Silicon nanowires as field-effect transducers for biosensor development: a review; M. Omair Noor et al 2013

• Silicon Nanowire Field-Effect transistors a versatile class of potentiometric nanobiosensors; Luye M U et al 2015

• High Performance Silicon Nanowire Field Effect Transistors; Yi Cui et al 2002

• Tuneable diameter electrostatically formed nanowire for high sensitivity gas sensing; Alex Henning et al 2014