University of Basel

Organic Solar Cells

Molecular and carbon-based electronic systems

Manuel Frietsch

31.05.2017

1. Motivation

Why Solar Cells?

2. Common Solar Cells

Why ORGANIC Solar Cells?

- Conjugated Polymer-based Organic Solar Cells
 Device Structures and Fundamental Functionality
- 4. Summary

1. Motivation

Why Solar Cells?

Common Solar CellsWhy ORGANIC Solar Cells?

Conjugated Polymer-based Organic Solar Cells Device Structures and Fundamental Functionality

4. Summary

Global Exergy Flux, Reservoirs and Destruction

1. Motivation

Why Solar Cells?

2. Common Solar Cells
Why ORGANIC Solar Cells?

Conjugated Polymer-based Organic Solar Cells Device Structures and Fundamental Functionality

4. Summary

Inorganic Solar Cells

- expertise
- stability, lifetime
- high efficiency
- drawbacks in production process
- non-flexible, thick and heavy devices
 - ⇒ Alternatives needed!

Organic Solar Cells

- cheap and easy production
- modifiable by chemical and molecular engineering
- high absorption coefficient
- thin, lightweight, flexible, transparent
 - ⇒ new and different kinds of applications possible!
- efficiency
- photochemical degradation
- vulnerable to water and oxygen
 - ⇒ need stable devices with better power efficiencies!

1. Motivation

Why Solar Cells?

2. Common Solar Cells

Conjugated Polymer-based Organic Solar Cells
 Device Structures and Fundamental Functionality

4. Summary

Properties of organic materials

Low dielectric constants

 $e_{Si} \approx 12, \ e_{GaAs} \approx 13 \Rightarrow \text{Wannier-Mott-Excitons}$

 $e_{pentacene} \approx 4, e_{PPV} \approx 2 \Rightarrow$ Frenkel-Excitons

⇒ strong electric fields needed

- external fields
- interfaces of different materials $\Rightarrow E = -\nabla U$

Properties of organic materials

Low dielectric constants

 $e_{Si} \approx 12, \ e_{GaAs} \approx 13 \Rightarrow \text{Wannier-Mott-Excitons}$

 $e_{pentacene} \approx 4, e_{PPV} \approx 2 \Rightarrow$ Frenkel-Excitons

⇒ strong electric fields needed

- external fields
- interfaces of different materials $\Rightarrow E = -\nabla U$

Chemical Reviews, 2007, Vol. 107, No. 4, 1326

Basic Device Structures

Chemical Reviews, 2007, Vol. 107, No. 4, 1328

Basic Device Structures

Bulk heterojunction configuration

Ideal structure of bulk heterojunction

Basic Device Structures

Current-Voltage curve of organic solar cell

Device efficiency

$$\eta_e = \frac{V_{oc} \cdot I_{sc} \cdot FF}{P_{in}}$$

Summary

Organic solar cells...

- are a possible addition to inorganic solar cells
- could have many promising applications
- need strong electric fields for charge separation ⇒ heterojunction devices
- have challenging drawbacks that have to be overcome

Further References / Sources

- Askari Mohammad Bagher. Comparison of Organic Solar Cells and Inorganic Solar Cells. International Journal of Renewable and Sustainable Energy. Vol. 3, No. 3, 2014, pp. 53-58.
- Nature Reviews Materials 1, Article number: 16056 (2016)
- Troshin, P. A. and Serdar Sariciftci, N. (2013) Organic nanomaterials for efficient bulk heterojunction solar cells, in Organic Nanomaterials: Synthesis, Characterization, and Device Applications (eds T. Torres and G. Bottari), John Wiley & Sons, Inc., Hoboken, NJ, USA
- plus the papers provided by Anton Vladyka

