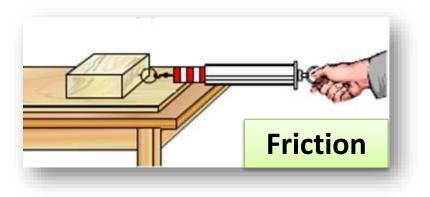


Zhao Liu

May 31st, 2017

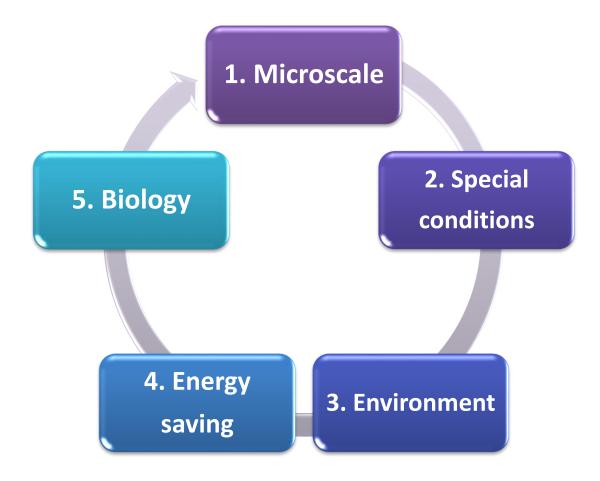
1. Tribology


2. Nanofriction

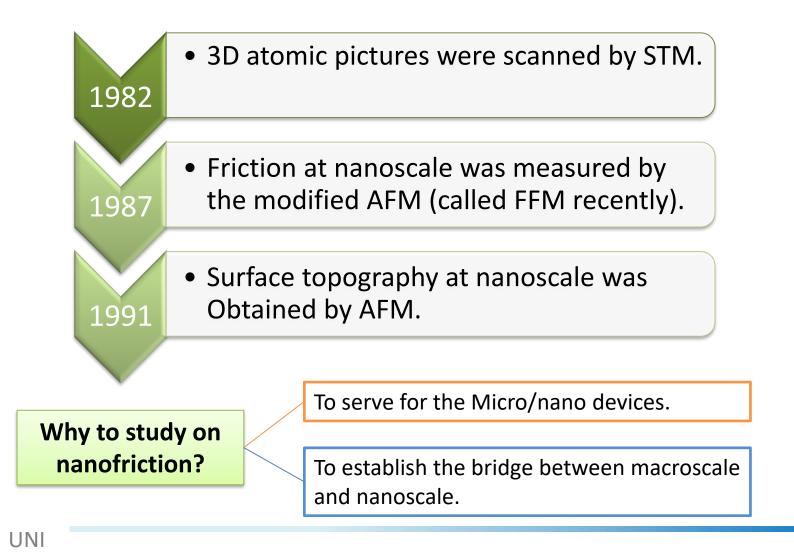
3. Superlubricity

4. Intercalation

1. Tribology Research content

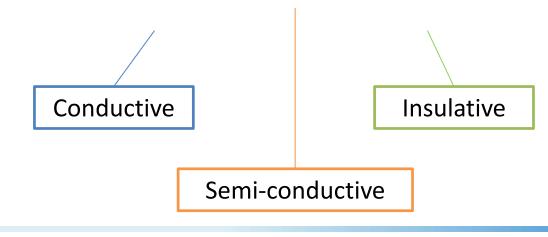


And other surface engineering technology



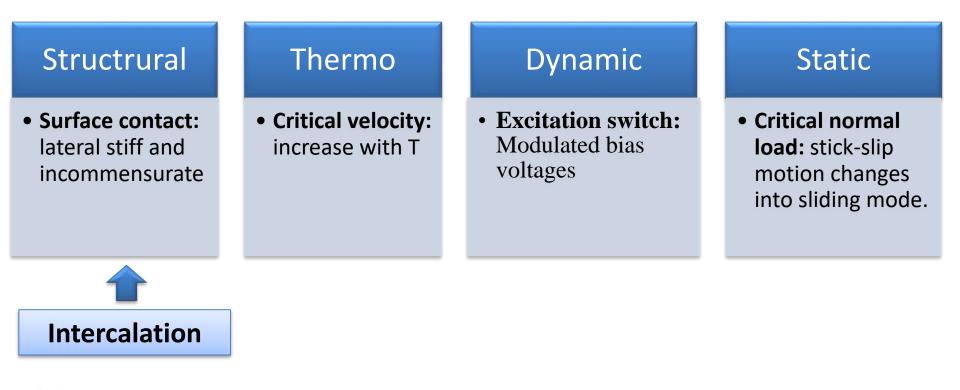
1. Tribology Research area

2. Nanofriction Development



Topic: The growth and friction properties of 2D materials

Key words: Superlubricity & Intercalation


Instruments : FFM & AFM

2D materials: <u>Graphene</u>, <u>MoS₂</u> and <u>h-BN</u>.

3. Superlubricity Definition & Category

Similar words: Superfluid, Superconductor.....

[1] A. Socoliuc, et al., *Science*, 313 (2006).

4. Intercalation A "sandwich" system

The research of intercalation

Devoted to investigation of the electronic structure and physical properties

The theory of intercalation

 Metal atom-aided defect formation and self-healing of C–C bonds at high temperature

The function of intercalation

 The strong interaction has been blocked and the graphene is more nearly free-standing

4. Intercalation Substrate

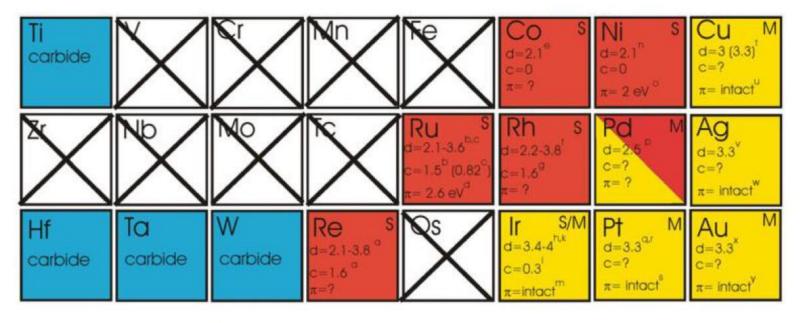


Fig. 1 For the elements labeled in blue, graphene may grow on the bulk-carbides of these elements. Elements in red are characterized as metals that interact strongly with graphene and elements in yellow are those that interact weakly. 'S' or 'M' in the upper right corner of each element-box indicates if graphene forms single or multiple rotational domains.

[2] M. Batzill, Surf Sci Report, 67 (2012).

4. Intercalation Substrate

Table 1 Thermal expansion coefficient of Graphene/Metal												
Metal	Gr	Ir	Re	Rh	Pt	Ru	Pd	Co	Ni	Au	Cu	Ag
$\alpha (\times 10^{-6} \mathrm{K}^{-1})$	< 1	6.5	6.6	8.4	9.0	9.4	11.5	12.4	13.0	14.2	18.5	19.5

Table 2 Melting point of metal

Metal	Ag	Cu	Au	Ni	Co	Pd	Pt	Rh	Ru	Ir	Re
T _{melting} (°C)	962	1065	1065	1455	1497	1554	1772	1963	2254	2447	3186

Table 3 Carbon solubilities (atom%) in different transition metals at 1000 °C

Metal	Au	Ag	Cu	Rh	Ir	Ru	Pt	Ni	Co	Re	Pd
C solubility (atom%)	0.01	0.01	0.04	0.89	1.35	1.56	1.76	2.03	3.41	4.39	5.98

Table 4 Graphene–Metal separation

Metal	Ru	Re	Co	Ni	Rh	Pd	Au	Pt	Cu	Ag	Ir
Ivicial	(111)	(0001)	(0001)	(111)	(111)	(0001)	(111)	(111)	(111)	(111)	(111)
G–M separation (nm)	0.21	0.21	0.21	0.21	0.22	0.25	0.33	0.33	0.33	0.33	0.34

4. Intercalation Substrate — Ir

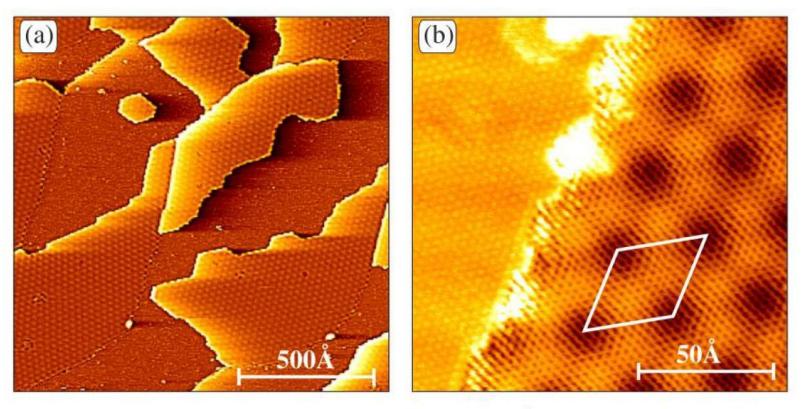


Fig. 8 (a) Graphene on Ir(111). The moiré with its 25.3Å periodicity is clearly visible (1300Å×1300 Å, UT =1.5V and IT =0.5 nA). (b) Attached to an iridium step edge (left) lies a graphene flake (100Å×100 Å, UT =-0.17V and IT =21 nA).

[3] J. Coraux , et al., New J Phys, 11 (2009).

4. Intercalation Intercalated layers

Η																	He	
																		Basic principle of
Li	Be											B	C	N	0	F	Ne	Intercalation:
<mark>5.40</mark>	9.67											8.31	11.3	14.5	13.6	17.4		Atoms with low IP (Cs,
Na	Mg									0		Al	Si	Р	S	Cl	Ar	K, Ba,) form a
<mark>5.15</mark>	7.66						2	1				<mark>5.99</mark>	8.16	10.5	10.4	13.0		monolayer film of
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	<mark>Ga</mark>	Ge	As	Se	Br	Kr	the intercalate under
<mark>4.50</mark>	6.12	6.57	6.83	6.76	6.78	7.45	7.91	7.89	7.65	7.74	9.41	<mark>6.01</mark>	7.91	9.83	9.77	11.8		the graphene layer,
Rb	<mark>Sr</mark>	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	Ι	Xe	whereas atoms with
<mark>4.18</mark>	<mark>5.70</mark>	6.23	6.64	6.77	7.10	7.29	7.37	7.47	8.35	7.59	9.01	5.79	7.35	8.66	9.02	10.5		high IP (Pt, Au, Si,)
Cs	<mark>Ba</mark>	<mark>Ce</mark>	Hf	Ta	W	Re	Os	Ir	<mark>Pt</mark>	Au	Hg	Tl	Pb	Bi	Po	At	Rn	form a thick
<mark>3.90</mark>	<mark>5.22</mark>	<mark>5.55</mark>	6.83	7.90	7.99	7.89	8.72	9.13	9.03	9.24	10.4	6.12	7.43	7.30	8.43	9.24		multilayer film.

Table 2 The ionization potentials of elements (eV)

Low ionization potential

High ionization potential

[4] A. Ya, et al., Phys Uspekhi, 36 (1993).

Annealing Temperature for Ir(111) intercalated system

Intercalation	Annealing T	Remarks
Grphene / <mark>Ba</mark> / Ir(111)	600 °C, 30%; 1300 °C, 50%	
Grphene / <mark>Pt</mark> / Ir(111)	700 °C, 100%	
Grphene / <mark>Si</mark> / Ir(111)	700°C, ~100%	Two part (thick)
Grphene / <mark>C</mark> / Ir(111)	<427 °C, $ imes$ >727 °C, up-down layers	
Grphene / <mark>Ag</mark> / Ir(111)	<627 °C, thick film >627 °C, desorbe	×
Grphene / <mark>Al</mark> / Ir(111)	~27 °C, $ imes$; ~900 °C, $√$	
Grphene / <mark>Ir</mark> / Ir(111)	800~1000 °C	
Grphene / <mark>Cu</mark> / Ir(111)	900 °C	
Grphene / <mark>C</mark> 60 / Ir(111)	Monolayer, $ imes$; Thick layers, $ extsf{d}$	Different structures

[5] S. Mikhailov, Published by InTech, 2011.

4. Intercalation Intercalated layers — C60

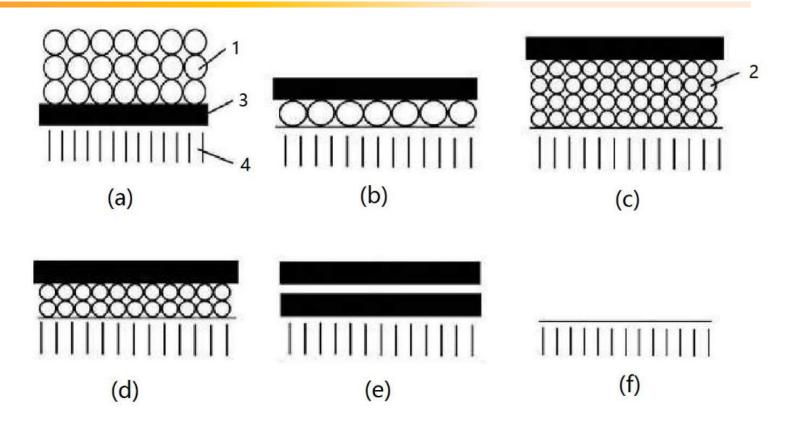


Fig. 5 Schematic for intercalation of the graphene layer on Ir(111) by molecular C₆₀: 1) deposited multilayer film of molecular C₆₀; 2) single carbon atom; 3) graphene layer; 4) iridium substrate.
Temperature: (a) 27°C; (b) 527°C, (c) 927°C; (d) 1327°C; (e) 1627°C; (f) 1927°C.

[5] S. Mikhailov, Published by InTech, 2011.

Thank you !

